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Abstract—We study the impact of capturing spatiotemporal
correlations between multiple wind supply points on economic
dispatch procedures. Using a simple dispatch model, we first
show analytically that over/underestimation of correlation leads
to positive and negative biases of dispatch cost, respectively. A
rigorous, large-scale computational study for the State of Illinois
transmission grid with real topology and physical constraints
reveals similar conclusions. For this study, we use the Rao-
Blackwell-Ledoit-Wolf estimator to approximate the wind covari-
ance matrix from a small number of wind samples generated
with the numerical weather prediction model WRF and we use
the covariance information to generate a large number of wind
scenarios. The resulting stochastic dispatch problems are solved
by using the interior-point solver PIPS-IPM on the BlueGene/Q
(Mira) supercomputer at Argonne National Laboratory. We find
that strong and persistent biases result from neglecting correlation
information and indicate to the need to design a market that
coordinates weather forecasts and uncertainty characterizations.

Index Terms—covariance, correlation, spatiotemporal, estima-
tion, uncertainty, wind power, dispatch

I. INTRODUCTION

Achieving efficient grid operations in the presence of inter-
mittent renewable power is a challenge because these supply
sources follow complex spatiotemporal patterns (see Figure 1)
that extend over wide geographical regions (e.g., tens to hun-
dreds of kilometers) and long periods of time (i.e., hours to
days). Reserve allocation procedures therefore can be ineffec-
tive, and more adaptive and systematic approaches based on
stochastic and robust optimization techniques are needed.

Stochastic and robust optimization techniques rely on un-
certainty characterizations. Correlation (or covariance) infor-
mation, in particular, is key because this guides forecast ag-
gregation/disaggregation procedures and because it is needed
to characterize risk in dispatch cost and revenues of market
players. For instance, if the supply of a wind farm in a region is
uncorrelated from that in another region, these can be forecasted
independently without affecting dispatch cost. When correla-
tions exist, however, one would expect that using independent
forecasts will introduce errors in the uncertainty characterization
and this will bias dispatch cost and shift incentives of the players
(wind power suppliers, suppliers, and consumers). This situation
was hypothesized in the stochastic market seeting of Pritchard
and coworkers [9] (see Section 5). Before the present study,
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Fig. 1. Spatial correlation for wind speed in the State of Illinois.

however, no evidence existed to show that this is indeed the
case and how large the cost bias would be.

From a market implementation point of view, determining
long-range correlations is a challenge because wind farm or
solar power plant owners might not be willing to share their
forecasting procedures and their site information with other
markets players and the ISO. Consequently, they might prefer
to construct their own forecasts and uncertainty levels, possibly
neglecting correlations with other sites. Owners might also need
to ignore long-range correlations because of computational limi-
tations faced by their forecasting vendors. Note also that keeping
forecasting information confidential provides a mechanism for
manipulation under a stochastic market setting (e.g., a supplier
overestimates its uncertainty). Computational challenges arise
because properly resolving the space-time resolution of nu-
merical weather prediction (NWP) systems requires significant
computational power [2]. NWP systems are extremely compu-
tationally intensive, and few computing sites exist in the world
that can obtain forecasts that accurately capture both short-
range conditions at the supply site and long-range behavior.
In other words, limits exist on the resolution of uncertainty
characterizations achievable, and these limits lead to ambiguity.

Properly designing decentralized markets that factor in un-
certainty in weather-driven supply is necessary, but this requires
significantly more complex information exchange mechanisms
between the ISO and market players compared with existing
deterministic settings [9], [16]. To design such information
exchange mechanisms, one needs to understand the effects that
certain information has on performance. In this work, we study
the effect of long-range correlation information on dispatch cost
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in the presence of wind power. We first present an analytic
example to prove that correlation between suppliers output can
positively or negatively bias dispatch cost (depending on the
correlation direction). We then perform a detailed computa-
tional study using a stochastic economic dispatch setting in
the Illinois transmission system. We use validated wind speed
ensemble forecasts obtained with the NWP system WRF that
are propagated through typical wind power curves in order
to obtain wind power ensembles. We use the Rao-Blackwell-
Ledoit-Wolf estimator to generate scenarios from the limited
number of WRF samples available, and we demonstrate the
efficacy of this estimator. Our computational study reveals that
dispatch cost biases that would scale up to an order of hundreds
of millions of dollars a year (if similar correlation patterns
across the year hold) can be introduced by ignoring long-range
correlation. We also show that confidence levels of dispatch cost
differ significantly from the actual ones when correlations are
neglected. In our study, the confidence intervals when ignoring
correlations were narrower, thus underestimating the number
scenarios necessary to close the gap. Our study thus indicates
that, as hypothesized in the stochastic market setting of [9],
centralized forecasts that can properly account for correlations
are superior to localized ones when used for constructing wind
power bids by suppliers in markets with signficant wind power
penetration.

The paper is structured as follows. In Section II we present
a motivating example to illustrate the effect of correlation
information on dispatch cost. In Section III we present a
detailed computational study using data for the state of Illinois
transmission system. This section describes the dispatch model,
the scenario generation procedure, the covariance estimator, and
the numerical results. Section IV presents concluding remarks.

II. MOTIVATING ANALYTICAL EXAMPLE

Consider a single-node system with three suppliers and one
demand. The first two suppliers, G1 and G2, have uncertain
power output and the outputs follow Gaussian distributions,
N (w1, σ1) and N (w2, σ2). We define ρ ∈ [−1, 1] as the
correlation coefficient and assume that both suppliers have a
cost pw. The third supplier, G3, is assumed to be deterministic;
this supplies power at cost pth with pth > pw and has infinite
capacity. The demand quantity, d, is assumed to be deterministic
and inelastic.

By construction, one can deduce that as much cheap power as
possible should be produced. If this does not satisfy all demand,
then G3 will be dispatched to fulfill the remaining demand.
Consequently, the negative dispatch cost is

cd = E [pw min(X1 +X2, d) + pth max(d−X1 −X2, 0)] .
(1)

To show the dependence cd = cd(ρ), we write (1) as follows:

cd = E [pwd+ pw min(X1 +X2 − d, 0)

+pth max(d−X1 −X2, 0)]

= pwd+ E [−pw max(d−X1 −X2, 0)

+pth max(d−X1 −X2, 0)]

= pwd+ E [(pth − pw) max(d−X1 −X2, 0)]

= pwd+ (pth − pw)E [d− (X1 +X2) |X1 +X2 ≤ d] .
(2)

Here, E[X|Y ] denotes the expectation of X conditional on event
Y . Furthermore, since the random variable X = X1 + X2 is
normally distributed, X ∼ N (µ, σ), where

σ = σ(ρ)

=
√
σ2
1 + 2ρσ1σ2 + σ2

2 and µ = w1 + w2, (3)

cd can be expressed

cd = pwd+ (pth − pw)E [d−X|X ≤ d]

= pwd+ (pth − pw) · d · Φ(d, σ)− (pth − pw)E [X|X ≤ d] ,
(4)

where Φ is the cumulative density function of X ,

Φ(x, σ) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
. (5)

We denote the probability density function of Y by φ(x, σ) =
1√
2πσ

exp
(
− (x−µ)2

2σ2

)
. One can show (see Lemma 1 from the

Appendix) that

E [X|X ≤ d] = −σ2φ(d, σ) + µΦ(d, σ). (6)

Combining this equation with (4), we obtain as the

cd(σ) = pwd+ (pth − pw)
(
(d− µ)Φ(d, σ) + σ2φ(d, σ)

)
.
(7)

The dependence of the dispatch cost cd on the correlation
parameter ρ becomes clear and is illustrated in Figure II. We
also have the following result:

Proposition 1: The dispatch cost cd(ρ) is a strictly increasing
function of the correlation parameter ρ.
Proof: See the Appendix.

This result shows that there can be a positive or negative bias
(depending on the correlation direction) between dispatch cost
values computed from different correlation structures (different
uncertainty characterizations). This can be interpreted as a
dispatch cost bias introduced by an error in the correlation coef-
ficient resulting from computational or market implementation
limitations.

With increasing ρ, the probability distribution of the total
available wind X = X1 + X2 exhibits an increasing variance
(see (3)). Consequently, it is less likely to satisfy demand using
the cheap uncertain supply and more likely to dispatch the
more expensive supply, thus resulting in a higher cost. For
instance, if two suppliers are fully positively correlated (ρ = 1),
a low output of one will result in a low output of the other. In
the extreme case of full negative correlation (ρ = −1) cheap
uncertain supply will most likely be used because if the output
of one wind farm drops, then this implies that the output of the
other one increases, so at least one wind farm is always active.
From Figure II we note also that, at low and high demands,
correlation has less effect on the dispatch cost.

From a purely dispatch cost perspective, one can argue
that an inaccurate forecasting system that overestimates and
underestimates the correlations may lead to the same expected
dispatch cost in the long run, compared with that obtained
with an ideal forecasting system. While we do not refute
this possibility, we point out that inaccurate forecasting also
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Fig. 2. Dispatch cost cd as a function of demand d for negative correlation
(ρ = −1), no correlation (ρ = 0), and positive correlation (ρ = 1).

results in gaps in prices and revenues and, hence in market
inefficiencies. These inefficiencies will bias incentives toward
certain players in unpredictable ways that might not average
out in the long run.

Errors in correlation between uncertain suppliers can occur
for various reasons. For example, the owners of the wind farms
might submit their own forecasts and scenarios, which ISO
will treat independently when dispatching. Such a situation is
discussed in [10]. Alternatively, correlations or the covariance
matrix may be poorly estimated in the NWP systems because
of the prohibitive computational cost of accurate estimators.
Hence, we advocate the use of ISO-centric weather forecasting
systems of atmospheric conditions while mapping to wind
power forecasts (that capture local and wind turbine effects)
can be done internally by wind farm owners in order to prevent
disclosure of information. The numerical simulations of the next
section indicate that savings of more than $10, 000 per dispatch
period can be obtained for full-scale power grids, such as the
one of the State of Illinois. The savings over one year can reach
a hundred million dollars, assuming a comparable amount of
savings per dispatch period in the rest of the year.

III. DETAILED COMPUTATIONAL STUDY

In this section, we present a detailed computational frame-
work to analyze the effects of correlation on dispatch cost and
prices. The framework comprises of a stochastic dispatch model,
numerical weather prediction, and covariance estimation and
scenario generation. Our setting includes realistic data for the
Illinois transmission system, and we assume a wind adoption
scenario of 17%.

A. Stochastic Dispatch Model

In our analysis we use the stochastic dispatch model from [10]
that captures forward and spot components. The model as-
sumes that the market is cleared at the current time using
predictions of the uncertain conditions at the next time period.

When uncertainty is realized, the suppliers are allowed to sell
additional power or buyback under the realized conditions. The
formulation is given by:

min
xi,Xi(ω)∑
i∈G

(
pixi + Eω

[
p+i (Xi(ω)− xi)+ − p−i (Xi(ω)− xi)−

])
(8a)

s.t.

τn(f) +
∑
i∈G(n)

xi = dn, n ∈ N (8b)

τn(F (ω))− τn(f) +
∑
i∈G(n)

(Xi(ω)− xi) = 0, n ∈ N , ω ∈ Ω

(8c)
f, F (ω) ∈ U , ω ∈ Ω (8d)
(xi, Xi(ω)) ∈ Ci(ω), i ∈ G, ω ∈ Ω (8e)

Here, N denotes the set of nodes (buses) and L the set of
transmission lines. The set of all suppliers is denoted by G.
Subsets G(n) denote the set of players connected to node n.
The forward dispatched quantities for players are xi, and the
spot quantities under scenario ω are Xi(ω). The forward power
flow through line ` ∈ L is denoted by f`, and f denotes the
vector of all line flows. Similarly, F (ω) denotes the vector of
line flows F`(ω) for each scenario ω. The demand is assumed to
be deterministic and inelastic and is represented by dn, n ∈ N .

The scenarios ω characterize the randomness in the model due
to unpredictable capacities and are mathematically expressed as
random vectors defined on some probability space (Ω,F , P ).
The expectation Eω is taken with respect to the measure P .
In practice, one considers a finite approximation of Ω obtained
through sampling.

The objective consists of minimizing the forward dispatch
cost

∑
i∈G pixi plus the expected adjustment or recourse dis-

patch cost
∑
i∈G Eω

[
p+i (Xi(ω)− xi)+ − p−i (Xi(ω)− xi)−

]
specific to individual scenarios. Here [y]+ = max{y, 0} and
[y]− = max{−y, 0}. The coefficients pi denote the bid price,
and p+i and p−i are price bids for real-time corrections of the
generators. A supplier i asks p+i > pi to sell additional power
or asks p−i < pi to buy power from the system (e.g., reduces
output). In our model we have used p−i = 0.8pi and p+i = 1.2pi.

The decision variables are the dispatch quantities for each
generator, xi, Xi(ω) and the power flows fl and F (ω). The
forward dispatches xi are “ahead” decisions that accounts for
randomness; the spot redispatches Xi(ω) represent “real-time”
decisions that are appropriate corrections once an individual
realization ω of the randomness is observed.

Function τn(·) is a mapping of the flow vector to the node
n. We denote by ν1(n) the inflow lines into node n ∈ N
and by ν0(n) the outflow lines. Equation (8b) describes the
power flow through a node n ∈ N which is the sum of
power τn(f) =

∑
l∈ν1(n) fl −

∑
l∈ν0(l) fl imported via the

transmission lines to node n and power
∑
i∈G(n) xi produced at

node n. Equation (8c) is the second-stage correspondent of (8b),
enforcing power flow balance at each node for each scenario
ω. It is shown in [10] that the multipliers associated with this
“residual” formulation (not with the simpler equivalent form,
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Fig. 3. Illinois transmission system.

τn(F (ω))+
∑
i∈G(n)Xi(ω) = 0) gives the clearing prices to be

used in the spot (or real-time) market. Equation (8d) represents
maximum flow constraints on individual lines, with U usually
being a polyhedron.

Equation (8e) expresses constraints on supply that come
from technological limits of the generators (such as maxi-
mum/minimum capacity, limited ramp-up/down power on short
notice) and intermittent availability of energy of some gener-
ators. In our model, Ci is deterministic for thermal genera-
tors (natural gas, coal, heater oil and nuclear) and given by
Ci = {(xi, Xi) : xi, Xi ∈ [mi,Mi], |xi −Xi| ≤ ri}, expressing
capacity and ramp constraints. The uncertain output is modeled
by Ci(ω) = {(xi, Xi(ω)) : xi ∈ [0,Mi], Xi(ω) ∈ [0,Wi(ω)]},
showing that the forward dispatch xi can be allowed to reach
maximum installed capacity and the spot dispatch Xi(ω) can
only be allowed to reach maximum power generated under
scenario ω. We consider ramp constraints with only one time
step.

Our model was set up for the State of Illinois power grid
which comprises 2, 522 lines, 1, 908 buses, 870 load buses
and 225 generators. The topology of the network is presented
in Figure 3. To obtain a large wind power installed capacity
(approximately 17%), we needed to create synthetic wind farms
in addition to the existing ones. The synthetic farms were chosen
to replace some existing coal or gas generators. This approach
was taken specifically to avoid possible network congestion that
would limit the amount of real wind adoption. In addition, we
replaced only thermal generators that were mirrored by other
(usually identically) generators in order to ensure that enough
thermal generation was available to satisfy demand in the low-
wind scenarios. The generation cost for the wind farm was set
to 5$/MW, the lowest across all generators.

B. Wind Scenario Generation

Wind direction and speed samples required for our study are
obtained from WRF. The WRF model [12] is a state-of-the-
art numerical weather prediction system designed to serve both
operational forecasting and atmospheric research needs. WRF
is the result of a multi-agency and university effort to build
a highly parallelizable code that can run across scales rang-
ing from large-eddy to global simulations. The comprehensive
description of the atmospheric physics includes cloud parame-
terization, land-surface models, atmosphere-ocean coupling, and
broad radiation models.
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Fig. 4. Wind speed realizations for 6 wind farm locations in Illinois and
observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day (12:00 AM).

We set up a computational nested domain structure for
WRF including a high-resolution sector that covers the State
of Illinois and two additional domains of larger coverage but
lower resolution that provide boundary conditions for the nested
domains [2]. This is illustrated in Figure 5. The initial conditions
from the assimilated state (also known as reanalyzed state) of
the atmosphere are randomly perturbed and propagated in time
through the nonlinear NWP model to obtain a set of ensembles
that describe possible trajectories of the atmospheric conditions.
The computational cost of this procedure is significant. Comput-
ing a single ensemble for Illinois over a 24-hour time window
takes 6 hours of wall-clock time running on 32 processors.
Because of these limitations, we computed only 30 ensembles
for June 4, 2006 [2]. The ensembles have been validated using
observations obtained from the National Climatic Data Center.
The ensembles for six different wind farm locations are shown
in Figure 4.

Each ensemble provides the components of the wind velocity
that are transformed to wind speed. This gives a 3D field
in geographical coordinates (latitude, longitude, and elevation)
evolving over time where the field points match the discretiza-
tion mesh in the inner domain. The wind farm locations,
however, do not match the discretization mesh. In addition, the
typical hub height used for wind farms (80 meters) may also not
match the WRF vertical layers. To remedy this issue, we use
linear and bilinear interpolation to compute wind speeds at the
farm locations from the WRF ensembles, therefore obtaining a
set of 30 ensembles for the speeds at the desired 3D coordinates.
We then compute the sample mean x̄, sample covariance S,
and the Rao-Blackwell-Ledoit-Wolf (RBLW) estimator Σ̂RBLW

as described in the next section. Using this approach, we can
compute many wind speed scenarios by sampling a multivari-
ate Gaussian with mean x̄ and estimated covariance matrix
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Fig. 6. Locations of subset of wind farms (red) and meteorological stations
(blue).

Σ̂RBLW .
Our computational framework is not restricted to the use

of WRF and RBLW covariance estimators and can accom-
modate scenarios generated with different scenario generation
techniques for wind speed, assuming that these can handle the
large spatial coverage presented in our computational study.
Other alternative scenario generation techniques include copula
transformation [14], [15], probabilistic models [13], and time-
recursive estimation of covariance matrix [8].

C. Covariance Estimation Methods and Validation

The simplest estimator for the covariance using the WRF
samples would be the sample covariance matrix. In our setting,
however, this matrix is rank-deficient and therefore noninvertible
since the number of WRF samples is smaller than the number
of the wind farms. Because of this, we cannot factorize it and
sample from it. In addition, the sample covariance estimator can
be unreliable when few samples are available. Consequently,
we investigate the use of other estimators and compare their
performance.

Mathematically, the problem of covariance estimation can be
expressed as the problem of estimating the matrix Σ ∈ Rp×p
of a random vector y ∈ Rp based on a set of realizations or
samples {xi}ni=1, for the case when n (number of samples) is
smaller than p (dimension of uncertainty space). In our case, p
is the number of wind supply points. Let x̄ = 1

n ·
∑n
i=1 xi ∈ Rp

denote the sample mean and S = 1
n ·∆X·∆XT ∈ Rp×p denote

the sample covariance matrix, where X = [x1,x2, . . .xn] ∈

Rp×n and ∆X = [x1 − x̄ ,x2 − x̄ , . . . ,xn − x̄] ∈ Rp×n.
Covariance estimators for the case p > n use regularizations

of the sample covariance matrix S to overcome the rank
deficiency. One of the most common regularizations is the
perturbation of the covariance matrix by a multiple of the
identity, which leads to shrinkage estimators of the type

Σ̂ = α · I + β · S, (9)

where I ∈ Rp×p is the identity matrix and α and β are
regularization parameters or weights chosen to minimize the
estimation error ‖Σ̂ − Σ‖, where ‖ · ‖ usually refers to the
Frobenius norm. Since the real covariance matrix Σ is unknown,
different techniques are used to compute statistical estimates for
α and β.

Ledoit and Wolf [3] propose the estimator Σ̂LW given by

Σ̂LW =
b2

d2
·m · I +

a2

d2
· S,

where

m = tr (S · I)/p, d2 = tr
(

[S−m · I] · [S−m · I]
t
)
/p,

(10)

b2 = min

 1

n
·
n∑
k=1

tr
(

[xk · xt
k − S] · [xk · xt

k − S]
t
)

p
, d2

 ,

(11)

and a2 = d2 − b2. Here, tr(A) denotes the trace of matrix A.
Chen et al. [1] propose a refinement of the Ledoit-Wolf esti-

mator, called the Rao-Blackwell Ledoit-Wolf estimator, which
we denote by Σ̂RBLW , that has better asymptotical properties
(as n→∞) than Σ̂LW . This estimator is given by

Σ̂RBLW = ρRBLW · I + (1− ρRBLW ) · S (12a)

ρRBLW = min

 n−2
n · tr

(
S2
)

+ tr2 (S)

(n+ 2) ·
[
tr (S2)− tr2(S)

p

] , 1

 . (12b)

A second estimator proposed in [1] is the oracle approxi-
mating shrinkage (OAS) estimator, which rely on a iterative
procedure to provably converge to

Σ̂OAS = ρOAS · I +
(
1− ρOAS)

)
· S (13a)

ρOAS = min

(
(1− 2/p) · tr

(
S2
)

+ tr2 (S)

(n+ 1− 2/p) [tr (S2)− tr2 (S) /p]
, 1

)
(13b)

The performance of these estimators is highly dependent
on the data set. For example, in [1] Σ̂OAS performs better
than Σ̂RBLW and Σ̂LW for data coming from a fractional
Brownian motion, but all three estimators perform comparably
for Gaussian AR(1) processes (for small values of n).

We demonstrate the performance of the three estimators
using the lightweight quasi-geostrophic (QG) model, which
is representative of a realistic atmospheric or oceanic data
assimilating system [11]. We consider the QG model on the 2D
Cartesian domain Ω = [0, 1]× [0, 1] to estimate the covariance
between 4× 4 grid at 40 consecutive times (p =160). The QG
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model describes the motion of a fluid and is mathematically
expressed as

qt = −ψx − ε · J (ψ, q)−A ·∆3ψ + 2 · π · sin (2 · π · y) ,

(14)

where q is the potential vorticity, ψ is the stream function,
∆ is the Laplacian operator, J (ψ, q) = ψx · qy − ψy · qx
is the Jacobian, and x and y are the horizontal and vertical
components, respectively. The coefficients A and ε are set to
2× 10−12 and A = 10−5, respectively.

The model uses homogeneous boundary conditions ∂Ω =
∂ψ = ∂q = 0 and initial conditions of the form

ψi,j = sin(α+ β · 4 · yi · xj) + cos(α+ β · 2 · yi · xj)
+ sin(α+ β · 2 · yi · xj) · cos(α+ β · 4 · yi · xj),

(15)

where (xi, yj), 1 ≤ i, j ≤ 64, are the discretization points.
Parameters α and β describe the shift and amplitude waves,
respectively.

The samples are built by picking four points from the
discretization of Ω at 40 consecutive times and randomly
perturbing the initial conditions using α = 1+ |µ1| and β = µ2,
where µ1 and µ2 are uniformly distributed random variables,
µ1 ∼ U(0, 10−4) and µ2 ∼ U(0, 10−2). Each initial condition
is propagated in time providing a sample associated with the
160 points of interest.

The quality of the estimators is inferred based on the percent-
age relative improvement in average loss norm (PRIAL) that
describes how much an estimator Σ̂ improves the estimation of
Σ with respect to S. PRIAL is defined as

δ
(
Σ,S, Σ̂

)
=

E
[
‖Σ− S‖2

]
− E

[
‖Σ− Σ̂‖2

]
E [‖Σ− S‖2]

. (16)

For this estimator, we note that larger is better, that S itself
would give a value of 0 for δ, whereas a perfect estimator would
result in δ = 1. The true covariance matrix Σ is evaluated using
200 samples. We evaluate the estimators using n = 25 and n =
40 samples. The PRIAL norms are shown in Table I. We note
that Σ̂RBLW offers the best improvement of the estimation over
the sample covariance matrix and is more robust for different
number of samples. In Figure 7 we show the structure of Σ
and Σ̂RBLW (n = 25 samples) and note that RBLW estimator
preserves the structure of the true covariance Σ.

TABLE I
PRIAL NORMS FOR THE ESTIMATORS FOR THE QG MODEL USING n = 25

AND n = 40 SAMPLES.

n δ
(
Σ,S, Σ̂LW

)
δ
(
Σ,S, Σ̂RBLW

)
δ
(
Σ,S, Σ̂OAS

)
25 26% 66% 62%
40 35% 64% 61%

D. Integrative Numerical Study

To perform our benchmarks, we consider two strategies:
• (Corr): This strategy computes the forward dispatch solu-

tion using scenarios. This is done by using a distribution
with covariance matrix Σ̂RBLW . In other words, this
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Fig. 7. True covariance matrix (top) and Rao-Blackwell-Ledoit-Wolf estimator
(bottom) for the sample size n = 25.

strategy assumes that the ISO has correct spatiotemporal
information.

• (Indep): This strategy computes the forward dispatch so-
lution using scenarios that do not capture correlation. This
is done by using a distribution with diagonal covariance
matrix diag(Σ̂RBLW ). We recall that the use of indepen-
dent scenarios corresponds to the case in which each player
submits to the ISO a set of scenarios created based on its
own forecast, leaving the ISO without information about
the correlation between players.

For both cases, we define as the predicted cost as the dispatch
cost obtained from the solution of the corresponding dispatch
problem. We then fix the ahead decisions to evaluate cost at
a new set of scenarios obtained by sampling the distribution
capturing correlation. We denote this cost as the realized cost.

We devised the simulations to also reveal the effect of
dispatch cost and the number of scenarios used. For this
purpose we have solved the dispatch model with S =
{4, 8, 16, 32, 64, 128, 256} scenarios. Because the dispatch cost
is a random variable (it is an estimator), we computed error
bands shown in Figure 8. We generated 256 batches of S
scenarios for each S = {4, 8, 16, 32, 64, 128, 256}, solved the
dispatch model for each batch, and computed the mean and the
standard deviation of the dispatch cost.

The sizes of the resulting optimization problems range from
14, 635 decision variables and 12, 884 constraints for S = 4
to 763, 579 decision variables and 704, 372 constraints for
S = 256. As can be seen, the size of the problems is significant.
To solve these problems, we exploit the well-known “dual-
block angular” structure using our parallel solver PIPS-IPM [4],
[5], [6], [7]. To compute the mean and standard deviation of
the dispatch cost for each S = {4, 8, 16, 32, 64, 128, 256} we
solve 256 instances in parallel, each instance using S parallel
processes. In these experiments we used “Intrepid” IBM BG/P
and “Mira” IBM BG/Q supercomputers at Argonne National
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Fig. 8. Mean and 95% confidence intervals for dispatch cost predicted with correlated and independent scenarios. We also show “realized” dispatch costs,
corresponding to costs obtained by implementing the predicted dispatch decisions under the correlated scenarions sampling scheme.

Laboratory. The Intrepid supercomputer has 40 racks with a total
40,960 nodes and a 3D torus high-performance interconnect;
each BG/P node has a 850 MHz quad-core PowerPC processor
and 2 GB of RAM. Mira is the replacement for Intrepid and
consists of 48 racks, each of 1024 nodes, and a 5D torus
interconnect. Each BG/Q node has 16 PowerPC A2 cores
operating at 1600 Mhz and 16 GB of memory. In our simulations
we have used up to 16, 384 nodes on each system (for the largest
run corresponding to S=256). On Mira, the total execution times
for solving 256 batches in parallel are between 6 minutes (for
S = 4) and 8 minutes (for S = 256). The slight increase in the
execution times with S is primarily caused by I/O overhead,
the optimization solution times remaining relatively constant
(a bit more than 5 minutes for S = 4 and almost 6 minutes
for S = 256). Serial times required to perform all simulations
would be on the order of days.

Our results are summarized in Figure 8. Form here, we can
make the following observations:

• A positive dispatch cost gap exists between the realized
dispatch costs of the (Corr) and the (Indep) strategies of
about 10, 000 USD/hr or 1.5%. This can add up to 100
million USD/yr. This gap should be interpreted as the
error induced by the suboptimality of the forward decision
due to the use of an incorrect probability distribution.
Furthermore, the gap does not close as the number of
scenario increases, being consistent with the analytical
dispatch model of Section II.

• The (Indep) and the (Corr) strategies exhibit different error
bands, and the bands converge at significantly different
rates. For the (Corr) strategy, the error bands are small for
64 or more scenarios. In particular, the standard deviation
of the dispatch cost is 0.45% and 0.36% when using 128
and 256 scenarios, respectively. This suggests that O(102)
scenarios offer a good approximate dispatch cost even
for a large number of wind farms. The (Indep) strategy
underestimates the amount of scenarios needed.

• The predicted and realized costs converge for the (Corr)
strategy while the gap does not close for the (Indep) strat-
egy because the (Indep) strategy uses the wrong probability
distribution. The gap is nearly 20, 000 USD/hr which can
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Fig. 9. Forward and spot prices with confidence intervals.

translate to up to 200 million USD/yr. This gap should
be interpreted as a predictive error induced by improperly
characterizing the uncertainty of the atmospheric condi-
tions (ignoring correlations).

• The (Corr) strategy correctly predicts the dispatch cost as
the scenarios are increased, as expected.

We also present in Figure 9 the distribution of the locational
marginal prices at a certain network bus computed with the two
sampling strategies. In particular, we observe that the (Corr)
ahead prices are consistenly larger than the (Indep) ahead prices,
a result related to the gap in the dispatch cost. Also, looking at
the real-time prices, one can see that while the two strategies
give the same mean, the distribution of the prices is different,
with the (Indep) prices being negatively skewed.

Our results indicate that a coordinated weather forecasting
capability is necessary to create proper uncertainty character-
izations of atmospheric conditions. Note that this does not
imply that the ISO would perform wind power forecasts for
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the suppliers because it would be impossible to capture local
conditions. The suppliers can still be responsible of translating
scenarios of meteorological conditions that capture long-range
correlations into wind power supply scenarios using private
knowledge of their own system at local conditions.

IV. CONCLUSIONS

We have demonstrated that neglecting correlations between
multiple wind supply points can result in strong biases of
dispatch cost. Our conclusions are drawn from a detailed study
that incorporates high-resolution wind speed forecasts from
numerical weather prediction models, covariance estimation
techniques, and stochastic dispatch models. We believe that
the results are of relevance as they suggest that a coordinated
uncertainty characterization procedure is needed to capture long-
range correlation.

APPENDIX

Proof of Proposition 1
We start with the following technical result.
Lemma 1: E [X|X ≤ d] = −σ2φ(d) + µΦ(d).

Proof: By direct computation we have

E [X|X ≤ d]

=

∫ d

−∞
xφ(x)dx =

= − σ√
2π

∫ d

−∞

(
−x− µ

σ2
− µ

σ2

)
exp

(
− (x− µ)2

2σ2

)
dx

= − σ√
2π

exp

(
− (x− µ)2

2σ2

)∣∣∣∣d
∞

+
µ√
2πσ

∫ d

−∞
exp

(
− (x− µ)2

2σ2

)
dx

= −σ2φ(d) + µΦ(d).

We are now prove Proposition 1.
Proof of Proposition 1:

We first show that cd(σ) given by (7) is strictly increas-
ing. For this let p(x, σ) = − (x−µ)2

2σ2 ; therefore φ(x, σ) =
1

σ
√
2π

exp(p(x, σ)). Observe that

d

dx
p(x, σ) = − (x− µ)

σ2
, (17a)

d

dσ
p(x, σ) = +

(x− µ)2

σ3
(17b)

d

dx
φ(x, σ) = φ(x, σ) · d

dx
p(x, σ) (17c)

d

dσ
φ(x, σ) = φ(x, σ) · d

dσ
p(x, σ)− 1

σ2
√

2π
exp(p(x, σ))

=
(x− µ)2

σ3
· φ(x, σ)− 1

σ
φ(x, σ). (17d)

The derivative of Φ with respect to σ can be computed as

follows:
d

dσ
Φ(d, σ)

=
d

dσ

∫ d

−∞
φ(p(x, σ))dx

=

∫ d

−∞

d

dσ
φ(p(x, σ))dx

(17d)
=

∫ d

−∞

(x− µ)2

σ3
· φ(p(x, σ))dx− 1

σ

∫ d

−∞
φ(p(x, σ))dx

= −
∫ d

−∞
φ(p(x, σ)) ·

(
−x− µ

σ2

)
· x− µ

σ
dx− 1

σ
Φ(d, σ)

(17a)
= −

∫ d

−∞
φ(p(x, σ)) · d

dx
p(x, σ) · x− µ

σ
dx− 1

σ
Φ(d, σ)

(17c)
= −

∫ d

−∞

d

dx
φ(p(x, σ)) · x− µ

σ
dx− 1

σ
Φ(d, σ)

= −φ(p(x, σ)) · x− µ
σ

∣∣∣∣d
−∞

+
1

σ

∫ d

−∞
φ(p(x, σ))dx− 1

σ
Φ(d, σ)

= −d− µ
σ
· φ(p(d, σ)). (18)

By differentiating (7) and using (17d) and (18), we compute

d

dσ
cd(σ) = (pth − pw)

(
(d− µ)

d

dσ
Φ(d, σ) + 2σφ(x, d)

+σ2 d

dσ
φ(d, σ)

)
= (pth − pw)

(
− (d− µ)2

σ
· φ(d, σ) + 2σφ(d, σ)

+
(d− µ)2

σ
· φ(d, σ)− σφ(d, σ)

)
= σ(pth − pw)φ(d, σ) > 0, (19)

which shows that cd(σ) is strictly increasing. Since σ(ρ) =√
σ2
1 + 2ρσ1σ2 + σ2

2 is also a strictly increasing function of ρ,
we conclude that cd is also strictly increasing function of the
correlation coefficient ρ.
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